yuliianikolaenko 30 декабря 2020

📊 Что такое Big Data простыми словами

Рассказываем об основных терминах, методах и инструментах, которые используются при анализе больших данных.
📊 Что такое Big Data простыми словами

О тенденция развития больших данных мы писали в статье «Почему Big Data так быстро развивается?». В новой статье расскажем о применениях больших данных простыми словами.

Что такое большие данные?

Big Data – область, в которой рассматриваются различные способы анализа и систематического извлечения больших объемов данных. Она включает применение механических или алгоритмических процессов получения оперативной информации для решения сложных бизнес-задач. Специалисты по Big Data работают с неструктурированными данными, результаты анализа которых используются для поддержки принятия решений в бизнесе.

<a href="https://thinkandsell.com/wp-content/uploads/2017/07/big-data-marketing.jpg" target="_blank" rel="noopener noreferrer nofollow">Источник</a>
Источник

Одно из определений больших данных звучит следующим образом: «данные можно назвать большими, когда их размер становится частью проблемы». Такие объемы информации не могут быть сохранены и обработаны с использованием традиционного вычислительного подхода в течение заданного периода времени. Но насколько огромными должны быть данные, чтобы их можно было назвать большими? Обычно мы говорим о гигабайтах, терабайтах, петабайтах, эксабайтах или более крупных единицах измерения. Тут и возникает неправильное представление. Даже данные маленького объема можно назвать большими в зависимости от контекста, в котором они используются.

Например, почтовый сервер может не позволить отправить письмо с вложением на 100 мегабайт, или, допустим, у нас есть около 10 терабайт графических файлов, которые необходимо обработать. Используя настольный компьютер, мы не сможем выполнить эту задачу в течение заданного периода времени из-за нехватки вычислительных ресурсов.

Как классифицируются большие данные?

Выделим три категории:

  • Структурированные данные, имеющие связанную с ними структуру таблиц и отношений. Например, хранящаяся в СУБД информация, файлы CSV или таблицы Excel.
  • Полуструктурированные (слабоструктурированные) данные не соответствуют строгой структуре таблиц и отношений, но имеют другие маркеры для отделения семантических элементов и обеспечения иерархической структуры записей и полей. Например, информация в электронных письмах и файлах журналов.
  • Неструктурированные данные вообще не имеют никакой связанной с ними структуры, либо не организованы в установленном порядке. Обычно это текст на естественном языке, файлы изображений, аудиофайлы и видеофайлы.
<a href="https://www.google.com/url?sa=i&amp;url=https%3A%2F%2Fwww.msab.com%2F2020%2F03%2F09%2Fbig-data-in-digital-forensics-the-challenges-impact-and-solutions%2F&amp;psig=AOvVaw3LtOCEJLprXk_tb1j89SAW&amp;ust=1609341125999000&amp;source=images&amp;cd=vfe&amp;ved=0CAIQjRxqFwoTCPjK6oS98-0CFQAAAAAdAAAAABAD" target="_blank" rel="noopener noreferrer nofollow">Источник</a>
Источник

Характеристики больших данных

Большие данные характеризуются четырьмя правилами (англ. 4 V’s of Big Data: Volume, Velocity, Variety, Veracity):

  1. Объем: компании могут собирать огромное количество информации, размер которой становится критическим фактором в аналитике.
  2. Скорость, с которой генерируется информация. Практически все происходящее вокруг нас (поисковые запросы, социальные сети и т. д.) производит новые данные, многие из которых могут быть использованы в бизнес-решениях.
  3. Разнообразие: генерируемая информация неоднородна и может быть представлена в различных форматах, вроде видео, текста, таблиц, числовых последовательностей, показаний сенсоров и т. д. Понимание типа больших данных является ключевым фактором для раскрытия их ценности.
  4. Достоверность: достоверность относится к качеству анализируемых данных. С высокой степенью достоверности они содержат много записей, которые ценны для анализа и которые вносят значимый вклад в общие результаты. С другой стороны данные с низкой достоверностью содержат высокий процент бессмысленной информации, которая называется шумом.

Традиционный подход к хранению и обработке больших данных

При традиционном подходе данные, которые генерируются в организациях, подаются в систему ETL (от англ. Extract, Transform and Load). Система ETL извлекает информацию, преобразовывает и загружает в базу данных. Как только этот процесс будет завершен, конечные пользователи смогут выполнять различные операции, вроде создание отчетов и запуска аналитических процедур.

По мере роста объема данных, становится сложнее ими управлять и тяжелее обрабатывать их с помощью традиционного подхода. К его основным недостаткам относятся:

  • Дорогостоящая система, которая требует больших инвестиций при внедрении или модернизации, и которую малые и средние компании не смогут себе позволить.
  • По мере роста объема данных масштабирование системы становится сложной задачей.
  • Для обработки и извлечения ценной информации из данных требуется много времени, поскольку инфраструктура разработана и построена на основе устаревших вычислительных систем.
<a href="https://www.d3vtech.com/assets/images/insights/what-is-data-science.jpg" target="_blank" rel="noopener noreferrer nofollow">Источник</a>
Источник

Термины

Облачные Вычисления

Облачные вычисления или облако можно определить, как интернет-модель вычислений, которая в значительной степени обеспечивает доступ к вычислительным ресурсам. Эти ресурсы включают в себя множество вещей, вроде прикладного программного обеспечение, вычислительных ресурсов, серверов, центров обработки данных и т. д.

Прогнозная Аналитика

Технология, которая учится на опыте (данных) предсказывать будущее поведение индивидов с помощью прогностических моделей. Они включают в себя характеристики (переменные) индивида в качестве входных данных и производит оценку в качестве выходных. Чем выше объясняющая способность модели, тем больше вероятность того, что индивид проявит предсказанное поведение.

Описательная Аналитика

Описательная аналитика обобщает данные, уделяя меньше внимания точным деталям каждой их части, вместо этого сосредотачиваясь на общем повествовании.

Базы данных

Данные нуждаются в кураторстве, в правильном хранении и обработке, чтобы они могли быть преобразованы в ценные знания. База данных это механизм хранения, облегчающий такие преобразования.

Хранилище Данных

Хранилище данных определяется как архитектура, которая позволяет руководителям бизнеса систематически организовывать, понимать и использовать свои данные для принятия стратегических решений.

Бизнес-аналитика

Бизнес-аналитика (BI) – это набор инструментов, технологий и концепций, которые поддерживают бизнес, предоставляя исторические, текущие и прогнозные представления о его деятельности. BI включает в себя интерактивную аналитическую обработку (англ. OLAP, online analytical processing), конкурентную разведку, бенчмаркинг, отчетность и другие подходы к управлению бизнесом.

Apache Hadoop

Apache Hadoop – это фреймворк с открытым исходным кодом для обработки больших объемов данных в кластерной среде. Он использует простую модель программирования MapReduce для надежных, масштабируемых и распределенных вычислений.

Apache Spark

Apache Spark – это мощный процессорный движок с открытым исходным кодом, основанный на скорости, простоте использования и сложной аналитике, с API-интерфейсами на Java, Scala, Python, R и SQL. Spark запускает программы в 100 раз быстрее, чем Apache Hadoop MapReduce в памяти, или в 10 раз быстрее на диске. Его можно использовать для создания приложений данных в виде библиотеки или для выполнения специального анализа в интерактивном режиме. Spark поддерживает стек библиотек, включая SQL, фреймы данных и наборы данных, MLlib для машинного обучения, GraphX для обработки графиков и потоковую передачу.

Интернет вещей

Интернет вещей (IoT) – это растущий источник больших данных. IoT – это концепция, позволяющая осуществлять интернет-коммуникацию между физическими объектами, датчиками и контроллерами.

Машинное Обучение

Машинное обучение может быть использовано для прогностического анализа и распознавания образов в больших данных. Машинное обучение является междисциплинарным по своей природе и использует методы из области компьютерных наук, статистики и искусственного интеллекта. Основными артефактами исследования машинного обучения являются алгоритмы, которые облегчают автоматическое улучшение на основе опыта и могут быть применены в таких разнообразных областях, как компьютерное зрение и интеллектуальный анализ данных.

Интеллектуальный Анализ Данных

Интеллектуальный анализ данных – это применение специфических алгоритмов для извлечения паттернов из данных. В интеллектуальном анализе акцент делается на применении алгоритмов в ходе которых машинное обучение используются в качестве инструмента для извлечения потенциально ценных паттернов, содержащихся в наборах данных.

<a href="https://cdn.datafloq.com/cache/blog_pictures/878x531/big-data-analytics-paving-path-businesses-decision.jpg" target="_blank" rel="noopener noreferrer nofollow">Источник</a>
Источник

Где применяются большие данные

Аналитика больших данных применяется в самых разных областях. Перечислим некоторые из них:

  • Поставщикам медицинских услуг аналитика больших данных нужна для отслеживания и оптимизации потока пациентов, отслеживания использования оборудования и лекарств, организации информации о пациентах и т. д.
  • Туристические компании применяют методы анализа больших данных для оптимизации опыта покупок по различным каналам. Они также изучают потребительские предпочтения и желания, находят корреляцию между текущими продажами и последующим просмотром, что позволяет оптимизировать конверсии.
  • Игровая индустрия использует BigData, чтобы получить информацию о таких вещах, как симпатии, антипатии, отношения пользователей и т. д.
***

Хочу подтянуть знания по математике, но не знаю, с чего начать. Что делать?

Если базовые концепции языка программирования можно достаточно быстро освоить самостоятельно, то с математикой могут возникнуть сложности. Чтобы помочь освоить математический инструментарий, «Библиотека программиста» совместно с преподавателями ВМК МГУ разработала курс по математике для Data Science, на котором вы:

  • подготовитесь к сдаче вступительных экзаменов в Школу анализа данных Яндекса;
  • углубитесь в математический анализ, линейную алгебру, комбинаторику, теорию вероятностей и математическую статистику;
  • узнаете роль чисел, формул и функций в разработке алгоритмов машинного обучения.
  • освоите специальную терминологию и сможете читать статьи по Data Science без постоянных обращений к поисковику.

Курс подойдет как начинающим специалистам, так и действующим программистам и аналитикам, которые хотят повысить свой уровень или перейти в новую область.

Комментарии

ВАКАНСИИ

Добавить вакансию
Разработчик C++
Москва, по итогам собеседования

ЛУЧШИЕ СТАТЬИ ПО ТЕМЕ