Пожаловаться

Явления, которые не может объяснить математика

85692
Пожаловаться

Думаете, математика поможет решить все задачи и вопросы? А вот и нет! Смотрите, как она не справляется с толкованием некоторых вещей.

Явления, которые не может объяснить математика

Даже математика не в силах объяснить отдельные невероятные явления. Предпочитаю называть эти вещи «Абракадаброй математики». В разработке тоже встречаются подобные загадки.

Изложенная информация будет наиболее интересна фронтендерам и заядлым любителям математики ;)

Любимое число

Давайте посмотрим на один такой трюк. Предположим, что вы учитесь в классе с численностью не менее 25 студентов, а я преподаватель. Даю каждому чистый лист бумаги и прошу написать цифру от 0 до 9 включительно. Когда вы справитесь и свернёте листок, соберу бумаги. Само собой, я не в курсе, что вы придумали. Тем не менее гарантирую, что буду знать число, которое встречается чаще других в ответах аудитории.

Теперь утверждаю, что большинство студентов выбрали цифру 7. Если учащийся придёт, посмотрит все листки и проверит, то скажет: «Вы правы! Но как?»

К сожалению, нет никакого объяснения такой закономерности, хотя она железная. Большинство людей всегда делают выбор в пользу цифры 7. Я мог сыграть в эту игру свыше 100 раз, и никогда бы не ошибся.

О данном фокусе мне рассказал один любимый профессор, Али Несин, 10 лет назад. Чтобы попробовать трюк, соблюдайте некоторые условия. Перво-наперво нужно как минимум 25 человек. В противном случае будет рискованно. Вы подумаете, что речь идёт о вероятности, но на самом деле это не так. Поскольку в задании 10 цифр, вероятность выбора любой составляет 1/10 для каждого учащегося. Итак, математическое толкование не работает здесь. Думаю, что это объясняется физиологией или социологией.

Красота

А также математика не способна истолковать другую чрезвычайно занимательную вещь. Здесь 4 разных прямоугольника. Спросите людей, какой красивее, и 70–80% выберут зелёный.

Явления, которые не может объяснить математика

При этом не получится объяснить положение с использованием только математики, потому что в ней нет определения красоты, и этот факт математически непостижим. Впрочем, маркетологи использовали данную информацию вовсю. Когда поняли, что основная масса людей предпочитает определённый дизайн.

Спустя много лет мы так и не нашли ответ, почему люди выбирают число 7, но академик Адриан Беджан разобрался в причине выбора зелёного прямоугольника. Профессор обнаружил, что «человеческий глаз способен интерпретировать изображение на основе золотого сечения быстрее, чем любое другое».Таким образом, благодаря гармоничному делению прямоугольник зелёного цвета и выглядит красивее остальных фигур.

Вероятно, вы слышали об Евклиде. Этот математик написал книгу под названием «Элементы». Однозначно рекомендую вам купить том. В труде Евклид определил золотое сечение следующим образом:

Разделите прямую линию в крайнем и среднем отношении так, чтобы целая линия относилась к большему отрезку, как больший к меньшему.

Явления, которые не может объяснить математика

Другими словами, Евклид говорил: на отрезке стоит точка, назовём её золотой, которая идеально разделяет линию. Он утверждал уверенно, но также и правдиво.

Явления, которые не может объяснить математика

Теперь говорим математически, когда провели отрезок |AB|, и между A и B – точка C, 
то получаем соотношения |AB|/|AC| и |AC|/|BC|. Тогда равенство этих двух соотношений будет 
золотым сечением, 1,618…, φ (фи).

Фи (/ faɪ /; заглавные Φ, строчные φ).

Уверен, что эта специальная пропорция вызывает море любопытства, и вам не терпится узнать, как Евклид получил значение золотого сечения? Давайте попробуем понять вместе.

Предположим что:
длина |AC| = x
и длина |CB| = y. Тогда

То есть если найдём значение x/y, то получим и величину φ, и это выведет нас на квадратное 
уравнение.

Перемножим накрест – (x + y) на y и x на x – и получим:

x² = xy + y²

Затем перенесём переменные в одну сторону, и в этот раз результат будет такой:

x² – xy + y² = 0

Напоминание: наша цель найти x/y. Итак, если разделить все члены на y², то получим:

Явления, которые не может объяснить математика

Когда определите (x/y) = φ, увидите:

φ² – φ – 1 = 0.

Здесь вспомните квадратичную формулу.

Квадратичная формула:

Пусть a, b и c – действительные числа. Решением ax² + bx + c = 0 будет:

Явления, которые не может объяснить математика

Квадратичная формула гласит, что произведение корней нашего уравнения (с/а) составляет –1. 
Таким образом, одно произведение корней отрицательно, а другое положительно. В то же время 
определение золотого сечения говорит: φ – неотрицательная величина. Значит, выбираем вариант 
со знаком «‎плюс». Теперь получится решить уравнение.

Явления, которые не может объяснить математика

Пока что работали над отрезком. До сих пор готовимся показать, почему люди выбирают зелёный прямоугольник выше и на каком основании Евклид назвал его золотым.

Когда вернёмся к нашему отрезку |AB| с точкой C, согнём его в золотой точке C, то получим 
прямой угол. Теперь построим прямоугольник. Он будет золотым, потому что длины сторон равны 
x и y, и как уже показали, x/y представляет собой золотое сечение φ.

Явления, которые не может объяснить математика

Золотой прямоугольник отличает свойство, которого нет ни у одного прямоугольника. В чём исключительность: если вырезать из него квадратную часть, оставшийся прямоугольник также золотой. Пусть это будет вам в качестве упражнения!

Непревзойдённый треугольник

Это ещё куда ни шло. Теперь попробуем другую задачу. Например, найти золотой треугольник, если такой существует.

Сначала решим, какой тип нужен для работы. Помните, когда удаляем квадратную часть из золотого прямоугольника, по-прежнему остаётся золотой прямоугольник. Нужно то же свойство для треугольников. Думаю, очевидно, что равносторонний не подходит, потому как при вырезании равностороннего треугольника из равностороннего треугольника остальная часть не будет такой же фигурой.

Тем не менее порадую тем, что возьмём равнобедренный треугольник. Шаги понятны. Берём его, а затем вырежем ещё один равнобедренный треугольник из нашего исходного, и проверим, будет ли оставшийся похож на первоначальный или нет. Если да, сделаем попытку назвать его золотым. А попробуем, потому что следующим шагом будет поиск соотношения сторон, равного золотому сечению.

Начнём с равнобедренного треугольника ABC с углами при основании величиной 2α. Затем рисуем 
линию от точки B к стороне |AC|, чтобы получить два равнобедренных треугольника ABD и BCD. 
Результат захватывает: углы при основании треугольника BCD также равны 2α, а такие же углы у 
ABD – α, потому что сумма двух внутренних углов даёт внешний. Таким образом, углы треугольника 
ABC – α, 2α, 2α. Получаем 5α = 180 и α = 36.

Явления, которые не может объяснить математика

И вот мы нашли крайне специфический треугольник с верхним углом 36 и углами при основании 72.

Явления, которые не может объяснить математика

Для второго шага проверьте соотношение длин фигуры. Говоря |AB| = |AC| = x и |BC| = y, получим:

|AD| = |BD| = y и |CD| = x – у

И цель – найти x/у = φ или нет. Из подобия находим:

Явления, которые не может объяснить математика

Как видите, получаем то же квадратное уравнение в конце. Таким образом, треугольник с углами 36–72–72 заслуживает названия «‎золотой». Кстати, когда продолжите углубляться, вы увидите, что 108–36–36 – также золотой треугольник. Эта информация будет полезна при работе с пятиугольником.

Явления, которые не может объяснить математика

Исключительный пятиугольник

Рассмотрим другой пример. Изобразите пятиугольник, каково соотношение между длинами его 
диагонали и стороны?

Если вы нарисуете диагональ с любого края, то получите золотой треугольник, потому что углы 
будут 108, 36 и 36.

Итак, когда длина одной стороны пятиугольника равна 1, то длина диагонали равняется φ.

Мы решили сложный вопрос без математики. Когда не знаем о золотом сечении, приходится справляться с кучей линий, квадратными уравнениями и подобным.

Явления, которые не может объяснить математика

Исследуйте ещё один пример. Нарисуйте все диагонали пятиугольника и получите несравненный 
результат. Посередине будет меньший пятиугольник, и каждый видимый треугольник окажется золотым.

Явления, которые не может объяснить математика

Вот вопрос: каково соотношение площади маленького пятиугольника к площади большого?

Это легко решить, когда примем одну сторону небольшого пятиугольника за 1. Тогда длина другой 
стороны маленьких треугольников будет φ. И то же отношение подскажет, что длина основания 
треугольника равна φ². Теперь поможет подобие. Коэффициент подобия составляет 1/φ², а 
соотношение площадей будет 1/φ⁴.

Явления, которые не может объяснить математика

Удивительное качество φ

А также отметим ещё одно отличительное свойство φ. Вернитесь и вспомните квадратное уравнение φ.

φ² – φ – 1 = 0, так что это даст:

φ² = φ + 1

φ – единственное число, квадрат которого равен сумме самого себя и 1. Нет такого действительного числа, чтобы при добавлении к нему 1 вы увидели квадрат этого числа. И что любопытно, получаем такое:

φ² = 1φ + 1

φ³ = 2φ + 1

φ⁴ = 3φ + 2

φ⁵ = 5φ + 3

φ⁶ = 8φ + 5

...

Вот примечательные постоянные числа. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,… Они не случайные, а происходят из ряда Фибоначчи, где каждый член – сумма двух предыдущих.

Связь между последовательностью Фибоначчи и золотой пропорцией беспрецедентна. Отношение двух идущих друг за другом чисел из ряда приобретает золотое сечение через некоторое время. Вы получите эту пропорцию из каждой цифры, когда возьмёте большое число из последовательности.

Например, 5/3 = 1,666...

8/5 = 1,6

13/8 = 1,61...

21/13 = 1,618...

Продолжайте вычислять и получите новое число с φ.

Данная информация полезна, потому что помогает легко найти sin 18 или cos 36 без калькулятора. Это тоже упражнение для вас!

А чем вас удивила математика?

85692

Комментарии

ответил на комментарий оставил(а) комментарий 21 октября в 22:08
Пожаловаться

Вопросы типа "почему люди предпочитают то-то и то-то" к математике отношения вообще не имеют, и требовать от неё объяснений — просто глупость. Эти вопросы относятся скорее к психологии.

Почему люди предпочитают число 7, и предпочитают ли на самом деле (никогда таких экспериментов не проводил) — не знаю, но в качество правдоподобной гипотезы могу предположить, что всё дело в распространённом суеверии, что число 7 приносит счастье, удачу и вообще сулит успех.

Насчёт "самого красивого прямоугольника" могу сказать, что лично мне самым красивым кажется прямоугольник с отношением сторон 4:3≈1,333, что гораздо меньше золотого сечения (кстати, у меня на экране зелёный прямоугольник имеет отношение сторон 58:38≈1,526, что тоже заметно меньше золотого сечения). Также известно, что практически все "чудеса", приписываемые золотому сечению, включая особую красоту тел, где оно встречается — не более, чем мифы. И ссылка на академика-профессора этого факта не отменяет.

Я ни в коем случае не хочу сказать, что золотое сечение не имеет никаких применений.

Библиотека программиста: «φ – единственное число, квадрат которого равен сумме самого себя и 1. Нет такого действительного числа, чтобы при добавлении к нему 1 вы увидели квадрат этого числа.»

Это неправда. Таким же свойством обладает и число 1-φ (второй корень того же квадратного уравнения).

изменено 21 октября в 10:10
Ответить
0 0
Показать ветку
ответил на комментарий оставил(а) комментарий 18 октября в 22:41
Пожаловаться

Зелёный цвет как предпочтительный идёт от генетики. Зелёный цвет это цвет растений, продуцентов, организмов образующих органические вещества из неорганических. Все животные, включая человека инстинктивно стремятся к растениям, потому что это потенциальный источник пропитания, а также в некоторых случаях укрытия, т.е. объект повышающий шансы на выживание. Что за долгие годы и отпечаталось на генетическом уровне. А ещё длина ЭМ волны зелёного цвета располагается в середине диапазона видимого излучения. Ну и как бы распределение Гауса там. Как по мне более удивительное число, число е.

Ответить
1 0
Показать ветку
ответил на комментарий оставил(а) комментарий 11 октября в 21:46
Пожаловаться

А вот например ещё одна штука которую не могут объяснить математики,почему мужики любят одних, а женятся на других?. Этого говорят в народе даже бабы объяснить не могут, куда нахрен математикам соваться.

Ответить
0 0
Показать ветку
ответил на комментарий оставил(а) комментарий 09 октября в 17:13
Пожаловаться

Стоп-стоп. Насчет второго явления, "красота". Помнится. математики как раз и выяснили, что прямоугольник с пропорциями золотого сечения не является самым привлекательным для человека. Книга Марио Ливио "Phi - число Бога. Золотое сечение - формула мироздания"

Ответить
0 0
Показать ветку
ответил на комментарий оставил(а) комментарий 09 октября в 12:32
Пожаловаться

Как раз с семёркой всё понятно - в неделе 7 дней. Было бы 5 или 6 , тогда и ответы были бы другие. С прямоугольником тоже всё ясно , так как 16:9 оптимальный размер монитора. А он произошёл от размера поля зрения человека. А вот поля зрения можно как раз объяснить статистикой попадания значимых объёктов в это поле.

Ответить
4 0
Показать ветку
ответил на комментарий оставил(а) комментарий 17 октября в 00:19
Пожаловаться

Плюс много пословиц и поговорок связано с числом 7.

изменено 17 октября в 12:10
Ответить
0 0
Показать ветку
ответил на комментарий оставил(а) комментарий 08 октября в 14:09
Пожаловаться

Спички, гвозди, и болты, вот самая лучшая математика...

Ответить
1 0
Показать ветку
ответил на комментарий оставил(а) комментарий 04 октября в 19:29
Пожаловаться

Если взять любой рейтинг чего угодно, то чаще всего первой цифрой будет 1. Это называется Закон Бенфорда и математики смогли это объяснить, есть занимательная статья В. И. Арнольда на эту тему.

изменено 04 октября в 07:10
Ответить
0 0
Показать ветку
ответил на комментарий оставил(а) комментарий 01 октября в 02:53
Пожаловаться

Меня удивила в детстве не сама математика, а её практическое применение Буратино. Помните, Мальвина даёт ему задачу: "У вас два яблока. Некто забрал одно. Сколько осталось?" Б. посчитал, что у него останется 2 яблока,так как "но ведь я не отдам НЕКТУ яблока, хоть он дерись!"

Ответить
0 0
Показать ветку
ответил на комментарий оставил(а) комментарий 30 сентября в 15:34
Пожаловаться

Выбор любимого числа и цветного прямоугольника - это из области психологии, а не математики, кмк. Но можно решить и с помощью математики, если выборка респондентов немаленькая. Или это уже социология? :)

Ответить
0 0
Показать ветку
ответил на комментарий оставил(а) комментарий 28 сентября в 01:54
Пожаловаться

Трюк "Любимое число" объясняется теорией игр.

Ответить
0 0
Показать ветку

Рекомендуем