Выбрасывай калькулятор: 17 полезных математических трюков

Собрали подборку классных математических трюков в помощь. С ними ты сможешь быстро считать в уме, не прибегая к калькулятору!

Привет!

Здесь 17 крутых математических трюков, которые полезны не только школьникам, но и взрослым. Они помогают производить сложные вычисления в голове. Освой эти техники, и будешь решать даже те задачи, которые когда-то казались непосильными.

А после можешь пройти наш быстрый математический тест ;)

1. Сложение больших чисел

Сложение крупных чисел в голове − намного более лёгкий процесс, чем кажется. А этот метод показывает, как упростить процесс, округлив все числа до десятка. Вот пример:

644 + 238

Чтобы было проще работать, округляем каждое из чисел. Итак, 644 превращаем в 650, а 238 становится 240.

Затем складываем 650 и 240. Получается 890. Чтобы найти ответ на исходное уравнение, нужно определить, сколько мы добавили к числам, чтобы их округлить.

650 - 644 = 6 и 240 - 238 = 2

Получается, что к первому числу (644) мы добавили 6, а ко второму (238) − 2. Складываем 6 и 2 вместе, получаем 8.

Остаётся вычесть из суммы округлённых чисел (890) лишнее (8):

890 - 8 = 882

Получаем, что 644 + 238 = 882. Это один из основных математических трюков, которые стоит знать.

2. Вычитание из 1000

Вот основное правило вычитания большого числа из 1000: раздели своё трёхзначное число на первую, вторую, третью цифру. Теперь вычти первую из 9, вторую из 9, а третью из 10. Например:

1000 - 556

Шаг 1: вычитаем 5 из 9 = 4

Шаг 2: вычитаем 5 из 9 = 4

Шаг 3: вычитаем 6 из 10 = 4

Ответ 444.

3. Умножение на 5

Умножая число 5 на четное число, можно быстро найти ответ. Например, 5 х 4:

Шаг 1: Берём число, которое хотим умножить на 5 и делим его пополам. В нашем случае, 4 превращаем в 2.

Шаг 2: Добавляем ноль к получившемуся числу, чтобы найти ответ. К числу 2 ставим рядом 0, получаем 20.

5 х 4 = 20

При умножении нечетного числа на 5 формула немного отличается. Например, рассмотрим 5 х 3:

Шаг 1: Вычитаем единицу из числа, которое хотим умножить на 5. В нашем случае, 3 превращаем в 2.

Шаг 2: Теперь делим получившееся число (2) пополам, получаем 1. Ставим последнее получившееся число на первое место, а число 5, на которое мы хотели умножать изначально, приставляем рядом. Получается, рядом с 1 ставим 5, становится 15.

5 х 3 = 15

4. Шпаргалка

Вот быстрый способ узнать, когда число может быть равномерно разделено на эти же числа:

  • 10, если число заканчивается на 0.
  • 9, когда цифры складываются вместе, а сумма делится поровну на 9.
  • 8, если последние три цифры делятся на 8, или число оканчивается на 000.
  • 6, если при сложении чётных чисел сумма делится на 3.
  • 5, если число заканчивается на 0 или 5.
  • 4, если число оканчивается на 00 или двузначное число, которое делится на 4.
  • 3, если при сложении цифр числа результат делится на 3.
  • 2, если оно заканчивается на 0, 2, 4, 6 или 8.

5. Умножение на 9.

Это ещё один из математических трюков, который полезен в жизни. Нужен он для умножения любого числа на 9. Вот как это работает:

Покажем на примере умножения 9 на 3.

Шаг 1: Вычитаем 1 из числа, которое умножается на 9.

3 - 1 = 2

Число 2 является первым числом в ответе на уравнение.

Шаг 2: Вычитаем получившееся число из 9.

9 - 2 = 7

Число 7 является вторым числом в ответе на уравнение.

Итого, 9 х 3 = 27.

6. Трюки с числами 10 и 11

Хитрость в умножении любого числа на 10 состоит в добавлении нуля к концу числа. Например, 62 х 10 = 620.

Существует также простой способ умножения любого двузначного числа на 11. Вот оно:

11 х 25

Возьмём двузначное число и отделим первую часть числа от второй − из 25 сделаем 2 и 5.

Теперь складываем эти два числа вместе и помещаем результат в центр, между 2 и 5:

2 (2 + 5) 5

2 7 5

Ответ: 11 х 25 = 275.

Если число в центре содержит две цифры, добавь первое число из суммы к первой цифре итогового числа, а второе оставь на месте. Вот пример для уравнения 11 х 88:

8 (8 + 8) 8

8 (16) 8

(8 + 1) 6 8

9 6 8

Получаем ответ: 11 х 88 = 968.

7. Проценты

Найти процент от числа может быть несколько сложно, если не подумать о способе решения, а просто считать. С этим методом всё проще. Чтобы узнать, сколько составляет 5% от 235, нужно:

Шаг 1: Переместить десятичную точку на одно значение вправо, 235 (235.0): становится 23.5.

Шаг 2: Разделить 23.5 на число 2, ответ − 11.75. Это ответ на исходное уравнение.

8. Возведение в квадрат двузначного числа с окончанием 5

Используем число 35 в качестве примера:

Шаг 1: Умножим первую цифру на сумму единицы и первой цифры.

Шаг 2: В окончание поставим 25.

35 в квадрате = 3 x (3 + 1) & 25

3 x (3 + 1) = 12

12 и 25 = 1225

35 в квадрате = 1225.

9. Умножение больших чисел

Если при умножении больших чисел одно из них является четным, раздели первое число пополам, а второе умножь на 2. Например 20 х 120:

Шаг 1: Делим 20 на 2, получаем 10. Умножаем 120 на 2, получаем 240.

Затем умножаем два ответа вместе:

10 х 240 = 2400

Ответ: 20 х 120 = 2400.

10. Умножение чисел, оканчивающихся на 0.

Суть метода в том, чтобы умножить числа без 0, а потом добавить нули. Рассмотрим умножение 200 на 400:

Шаг 1: Умножаем первые числа − 2 на 4:

2 х 4 = 8

Шаг 2: Ставим рядом убранные нули:

80000

200 х 400 = 80000

11. Умножение двузначных чисел

Это похоже на метод со сложением − здесь тоже нужно округлять. Рассмотрим его на примере выражения 97 x 96:

Округлим каждое из чисел до 100. Получим 100 и 100.

Теперь из первых 100 вычитаем первое число (97) и получаем 3, из вторых 100 вычитаем второе число (96) и получаем 4. Складываем получившиеся числа:

3 + 4 = 7

Теперь из 100 вычитаем 7: получается 93. Это будут первые две цифры итогового результата. Чтобы получить оставшиеся две цифры, нужно не сложить, а умножить 3 и 4. Приписываем результат 12 к 93, получается 9312.

12. Умножение между числами 6, 7, 8, 9

Посмотри на свои руки (в идеальном случае, должно быть 10 пальцев). Представим, что ты хочешь умножить 7 на 8.

Из 10 (как и пальцев на руках) вычти первое число (7), осталось 3. Запомни это число. Теперь вычти из 10 второе число (8), получается 2.

Теперь сложи получившиеся числа, результат (5) поставь на первое место. Затем, перемножь 3 и 2. Получится 6, цифру ставим на второе место, получается 56.

13. Подсчёт срока инвестиций

Казалось бы, как подборка математических трюков может помочь в таком серьёзном деле, как инвестирование? Может!

Если ты хочешь утроить свои инвестиции, запомни число 115. К примеру, инвестиции, которые дают 5% в год, утроятся через 23 года − 115 : 5 = 23.

14. Возведение в квадрат чисел от 51 до 59

Хотим посчитать 51 х 51. Возьмём одну из цифр, например, 1, к ней прибавим 25. Получается 26.

Теперь перемножим ту же цифру (1), получим 1 (01).

Соединим получившееся, 26 ставим первым числом, 01 вторым. Получается 2601.

15. Найти среднее без помощи калькулятора

Найти корень из таких чисел, как 49 или 81 достаточно просто, потому что корни являются целыми числами. Но как можно найти корень с остатком? Покажем на примере числа 420.

Шаг 1: Находим ближайшее число, которое можно получить возведением в квадрат. В данном случае, это число 400, которое получают возведением в квадрат числа 20.

Шаг 2: Делим наше число (420) на корень того, ближайшего числа (20). Получаем 21.

Шаг 3: Теперь находим среднее между результатом и корнем первого числа − среднее между 21 и 20 равно 20,5.

А корень числа 420 равен 20,494. Получается, что наш ответ максимально близок.

16. Возведение в квадрат двузначного числа с окончанием 1

Допустим, мы хотим узнать, чему равно 81 в квадрате.

81 х 81 = ?

Округляем число до меньшего − 80, возводим его в квадрат. Получается 6400.

Теперь к сумме дважды прибавляем округленное число − 6400 + 80 + 80, а в конце добавляем ещё один.

Получается 6560 + 1 = 6561.

17. Умножение кратных

Как бы ты посчитал значение выражения 32 х 125? Лучше упростить его:

32 х 125 = ?

16 х 250 = ?

8 х 500 = ?

4 х 1000 = 4000

Заключение

На этом наша подборка математических трюков заканчивается. Практика этих быстрых математических приемов может помочь как в жизни, так и в работе. А ещё, может быть, пробудит интерес к математике.

Понравилась подборка математических трюков? Тебя точно заинтересует следующее:

Источник: 10 математических трюков в блоге Concorida University-Portland

Расскажи, какими математическими трюками пользуешься ты?

ЛУЧШИЕ СТАТЬИ ПО ТЕМЕ

admin
08 октября 2017

13 ресурсов, чтобы выучить математику

Среди разработчиков часто возникают споры о том, необходимо ли изучать мате...