eFusion 08 марта 2020

10 Data Science книг к прочтению в 2020 году

Data Science повсюду: заголовки новостей пестрят нейросетями и машинным обучением. В этой подборке собрали 10 актуальных книг для освоения науки о данных.
10 Data Science книг к прочтению в 2020 году

1. Дж. Грас – Data Science. Наука о данных с нуля

Автор изложил материал по Data Science в необходимом размере для скорейшего старта в профессии. Знания аналитики и дисциплины не потребуются. В процессе чтения вы будете изучать Python, алгебру, математический анализ и статистику, а также теорию вероятностей, машинное обучение и прочие темы. Дополнительный акцент сделан на методы анализа социальных сетей, основы баз данных и SQL.

10 Data Science книг к прочтению в 2020 году

Data Science. Наука о данных с нуля

Книга в телеграм-канале @progbook

2. П. Брюс, Э. Брюс – Практическая статистика для специалистов Data Science

Для работы с изданием вам понадобятся знания математической статистики и языка R, а также базовые знания по общей теме. Легкодоступная форма подачи материала поможет быстро разобраться с такими темами, как: разведочный анализ данных, статистические эксперименты, проверка значимости, регрессия, классификация, машинное обучение и обучение без учителя.

10 Data Science книг к прочтению в 2020 году

Практическая статистика для специалистов Data Science

Книга в телеграм-канале @progbook

3. О'Нил, Шатт – Data Science. Инсайдерская информация для новичков

Книга основана на курсе Колумбийского университета по анализу данных. В процессе обучения вы узнаете о байесовском методе, визуализации данных, статистических алгоритмах, рекомендательных движках, MapReduce и финансовом моделировании.

10 Data Science книг к прочтению в 2020 году

Data Science. Инсайдерская информация для новичков

4. Ын, Су – Теоретический минимум по Big Data. Всё что нужно знать о больших данных

Издание не ориентировано только на профессионалов, заняться образованием могут начать аналитики, бизнесмены, программисты и непрофильные специалисты. На страницах этого труда рассматривается масса алгоритмов, каждому из которых посвящена отдельная глава, с картинками и примерами из реальных задач.

10 Data Science книг к прочтению в 2020 году

Теоретический минимум по Big Data. Всё что нужно знать о больших данных

5. Силен, Мейсман, Али – Основы Data Science и Big Data. Python и наука о данных

Изучение DS вы начнете с базовых вещей, а потом приступите к алгоритмам машинного обучения, массивам данных, NoSQL и т. д. В качестве языка программирования в этой книге используется Python со специальными библиотеками.

10 Data Science книг к прочтению в 2020 году

Основы Data Science и Big Data. Python и наука о данных

Книга в телеграм-канале @progbook

6. Дж. Вандер Плас – Python для сложных задач. Наука о данных и машинное обучение

Данное руководство погрузит вас в самые популярные статистические методы обработки данных и научные исследования. В процессе прочтения вы сможете разобраться с тем, как считывать различные форматы данных, как их преобразовывать и визуализировать, а также строить статистические модели и применять машинное обучение.

10 Data Science книг к прочтению в 2020 году

Python для сложных задач. Наука о данных и машинное обучение

Книга в телеграм-канале @progbook

7. R. Shams – Java Data Science Cookbook

Если вам необходимо построить научные модели для производства – Java ваше все. С помощью крутых библиотек, таких как MLlib, Weka и DL4j, вы сможете эффективно выполнить все необходимые задачи по обработке данных. Книга начинается с рецептов для получения, индексирования и поиска данных. Затем вы перейдете к различным методам анализа и извлечения информации. Последним учебным этапом будет обработка Big Data, глубокое обучение и визуализация.

10 Data Science книг к прочтению в 2020 году

Java Data Science Cookbook

8. A. Boschetti – Python Data Science Essentials

Здесь вы найдете подробные примеры, которые помогут понять основные статистические методы сбора и анализа данных. Вы получите представление о передовых темах, таких как алгоритмы машинного обучения, распределенные вычисления, настройка моделей прогноза и обработка естественного языка. А еще вы познакомитесь с инструментами глубокого обучения, такими как XGBoost, LightGBM и CatBoost.

10 Data Science книг к прочтению в 2020 году

Python Data Science Essentials

9. D. Toomey – Jupyter for Data Science

Если вы знакомы с Jupyter Notebook и хотите узнать, как использовать его возможности для выполнения различных задач в Data Science, эта книга для вас. Данное издание разъяснит каждый шаг внедрения эффективного конвейера обработки данных с использованием Jupyter от исследования данных до визуализации. Вы научитесь использовать функции Jupyter, чтобы делиться своими идеями и кодом с коллегами. В книге также описано, как Python 3, R и Julia могут быть интегрированы в Jupyter для различных задач обработки данных.

10 Data Science книг к прочтению в 2020 году

Jupyter for Data Science

10. P. Prevos – Principles of Strategic Data Science

Книга начинается с объяснения того, что такое наука о данных и как организации могут ее использовать для оптимизации всех рабочих процессов. Затем автор приводит критерии надежности информационных продуктов и способы визуализации информации. В процессе изучения пятиэтапной структуры вы будете открывать для себя стратегические аспекты DS, которые позволяют повысить ценность извлекаемых данных. В заключительной главе рассматривается роль штатного аналитика данных в процессе интеграции DS-подхода в бизнес-процессы организации.

10 Data Science книг к прочтению в 2020 году

Principles of Strategic Data Science

***

Не рассказали о какой-то интересной книге по теме Data Science? Пишите в комментариях.

Больше полезной информации вы можете получить на нашем телеграм-канале «Библиотека data scientist’а». Рекомендуем также обратить внимание на наш учебный курс по математике для Data Science.

Источники

МЕРОПРИЯТИЯ

Комментарии

ВАКАНСИИ

Добавить вакансию
Fullstack разработчик .NET
по итогам собеседования
Разработчик на Go в Еду
Москва, по итогам собеседования

ЛУЧШИЕ СТАТЬИ ПО ТЕМЕ