10 Data Science книг к прочтению в 2020 году

Data Science повсюду: заголовки новостей пестрят нейросетями и машинным обучением. В этой подборке собрали 10 актуальных книг для освоения науки о данных.

1. Дж. Грас – Data Science. Наука о данных с нуля

Автор изложил материал по Data Science в необходимом размере для скорейшего старта в профессии. Знания аналитики и дисциплины не потребуются. В процессе чтения вы будете изучать Python, алгебру, математический анализ и статистику, а также теорию вероятностей, машинное обучение и прочие темы. Дополнительный акцент сделан на методы анализа социальных сетей, основы баз данных и SQL.

Data Science. Наука о данных с нуля

Книга в телеграм-канале @progbook

2. П. Брюс, Э. Брюс – Практическая статистика для специалистов Data Science

Для работы с изданием вам понадобятся знания математической статистики и языка R, а также базовые знания по общей теме. Легкодоступная форма подачи материала поможет быстро разобраться с такими темами, как: разведочный анализ данных, статистические эксперименты, проверка значимости, регрессия, классификация, машинное обучение и обучение без учителя.

Практическая статистика для специалистов Data Science

Книга в телеграм-канале @progbook

3. О'Нил, Шатт – Data Science. Инсайдерская информация для новичков

Книга основана на курсе Колумбийского университета по анализу данных. В процессе обучения вы узнаете о байесовском методе, визуализации данных, статистических алгоритмах, рекомендательных движках, MapReduce и финансовом моделировании.

Data Science. Инсайдерская информация для новичков

4. Ын, Су – Теоретический минимум по Big Data. Всё что нужно знать о больших данных

Издание не ориентировано только на профессионалов, заняться образованием могут начать аналитики, бизнесмены, программисты и непрофильные специалисты. На страницах этого труда рассматривается масса алгоритмов, каждому из которых посвящена отдельная глава, с картинками и примерами из реальных задач.

Теоретический минимум по Big Data. Всё что нужно знать о больших данных

5. Силен, Мейсман, Али – Основы Data Science и Big Data. Python и наука о данных

Изучение DS вы начнете с базовых вещей, а потом приступите к алгоритмам машинного обучения, массивам данных, NoSQL и т. д. В качестве языка программирования в этой книге используется Python со специальными библиотеками.

Основы Data Science и Big Data. Python и наука о данных

Книга в телеграм-канале @progbook

6. Дж. Вандер Плас – Python для сложных задач. Наука о данных и машинное обучение

Данное руководство погрузит вас в самые популярные статистические методы обработки данных и научные исследования. В процессе прочтения вы сможете разобраться с тем, как считывать различные форматы данных, как их преобразовывать и визуализировать, а также строить статистические модели и применять машинное обучение.

Python для сложных задач. Наука о данных и машинное обучение

Книга в телеграм-канале @progbook

7. R. Shams – Java Data Science Cookbook

Если вам необходимо построить научные модели для производства – Java ваше все. С помощью крутых библиотек, таких как MLlib, Weka и DL4j, вы сможете эффективно выполнить все необходимые задачи по обработке данных. Книга начинается с рецептов для получения, индексирования и поиска данных. Затем вы перейдете к различным методам анализа и извлечения информации. Последним учебным этапом будет обработка Big Data, глубокое обучение и визуализация.

Java Data Science Cookbook

8. A. Boschetti – Python Data Science Essentials

Здесь вы найдете подробные примеры, которые помогут понять основные статистические методы сбора и анализа данных. Вы получите представление о передовых темах, таких как алгоритмы машинного обучения, распределенные вычисления, настройка моделей прогноза и обработка естественного языка. А еще вы познакомитесь с инструментами глубокого обучения, такими как XGBoost, LightGBM и CatBoost.

Python Data Science Essentials

9. D. Toomey – Jupyter for Data Science

Если вы знакомы с Jupyter Notebook и хотите узнать, как использовать его возможности для выполнения различных задач в Data Science, эта книга для вас. Данное издание разъяснит каждый шаг внедрения эффективного конвейера обработки данных с использованием Jupyter от исследования данных до визуализации. Вы научитесь использовать функции Jupyter, чтобы делиться своими идеями и кодом с коллегами. В книге также описано, как Python 3, R и Julia могут быть интегрированы в Jupyter для различных задач обработки данных.

Jupyter for Data Science

10. P. Prevos – Principles of Strategic Data Science

Книга начинается с объяснения того, что такое наука о данных и как организации могут ее использовать для оптимизации всех рабочих процессов. Затем автор приводит критерии надежности информационных продуктов и способы визуализации информации. В процессе изучения пятиэтапной структуры вы будете открывать для себя стратегические аспекты DS, которые позволяют повысить ценность извлекаемых данных. В заключительной главе рассматривается роль штатного аналитика данных в процессе интеграции DS-подхода в бизнес-процессы организации.

Principles of Strategic Data Science

***

Не рассказали о какой-то интересной книге по теме Data Science? Пишите в комментариях.

Больше полезной информации вы можете получить на нашем телеграм-канале «Библиотека data scientist’а». Рекомендуем также обратить внимание на наш учебный курс по математике для Data Science.

Источники

ЛУЧШИЕ СТАТЬИ ПО ТЕМЕ

admin
14 июля 2017

Пишем свою нейросеть: пошаговое руководство

Отличный гайд про нейросеть от теории к практике. Вы узнаете из каких элеме...
admin
05 апреля 2017

6 книг по Java для программистов любого уровня

Подборка материалов по Java. Если вы изучаете его, то обязательно найдете д...