Нейросеть для предсказания цены биткоина своими руками

2
8866

Разбираем с небольшой проект для сбора и анализа данных из социальных сетей с целью предсказать поведение цены биткоина в реальном времени.

Код, о котором пойдет речь продолжает Youtube-видео об автоматическом прогнозировании цены на биткоин.

Нейросеть для предсказания цены биткоина своими руками

Проект позволяет предсказать цену криптовалюты и использует данные социальных сетей Reddit и Twitter для машинного обучения. Мы собираемся использовать технику, называемую анализом настроений, чтобы найти эмоции, стоящие за пользователями, и попытаться выяснить, коррелирует ли цена с тем, как люди относятся к популярной криптовалюте. Мы будем использовать API CoinDesk для извлечения данных о ценах биткоина и python для программирования приложения.

По словам автора, данная сборка готова к работе на платформе Google Cloud.

Сбор данных для оценки биткоина

Чтобы собирать данные для аналитики в фоновом режиме, необходимо запустить программы Continuous_Stream_Data.py и Continuous_Stream_Sentiment.py. Эти скрипты позволят осуществлять сбор и предварительную обработку входных данных, а после сохранять все в файлы live_tweet.csv и live_bitcoin.csv.

Ядро движка

Основой для обработки данных будет нейросеть, построенная по модели LSTM (Long short-term memory). Основные параметры (подключаемые модули, данные для соединения с базой данных и аккаунтом в Twilio) устанавливаются в файле engine.py.

Подключаемые пакеты, в том числе для создания и тренеровки модели нейросети:

Подключение аккаунта Twilio:

Сервис Twillio предоставляет различные API, например, для обработки смс и голосовых сообщений. В данном случае он используется для аутентификации и отправки сообщений.

Дальше ядро загружает данные для тренеровки сети и передает их экземпляру библиотеки Keras, на основе которой строится модель:

Подключение базы данных:

Ядро обрабатывает данные базы и csv-файлов для подготовки статистики и расчета советов:

Если текущее значение оказывается больше или меньше порогового, сформируется соответствующее сообщение:

Данные о решении записываются в базу:

Здесь можно посмотреть код ядра целиком.

Пример содержания live_bitcoin:

И live_tweet:

Нейросеть выдает значение будущей цены биткоина с временной меткой. Вычисления делаются на основе порогового значения, установленного в коде движка. Полученная информация о времени, предсказанной и текущей цене, а также рекомендуемом действии (покупка/продажа) записывается в MySQL базу данных.

Автор отмечает, что поскольку модель вышла перегруженной (она хорошо работает с обучающей выборкой, но не очень – с тестовыми данными), не стоит рассматривать ее как инструмент для помощи в торговле. Однако этот код остается хорошим пособием по применению нейросетей и может помочь в изучении их работы.

Вас также могут заинтересовать другие статьи по теме:

Интересуетесь Data Science?

Подпишитесь на нашу рассылку, чтобы получать больше интересных материалов:

И не беспокойтесь, мы тоже не любим спам. Отписаться можно в любое время.




2 Комментарии

Оставьте комментарий