iOS-developer, ИТ-переводчица, пишу статьи и гайды.
В этой статье мы рассмотрим 25 основных алгоритмов динамического программирования с реализацией на Python, которые должен знать каждый, кто увлекается спортивным программированием.
Динамическое программирование — популярный метод в компьютерных науках и разработке программного обеспечения, который играет решающую роль в спортивном программировании. Это метод решения сложных проблем путем их разбиения на более мелкие подзадачи и решения каждой подзадачи только один раз с сохранением решений подзадач, чтобы их можно было повторно использовать при необходимости. В этой статье мы рассмотрим необходимые алгоритмы динамического программирования, которые должен знать каждый, кто увлекается спортивным программированием.
1. Числа Фибоначчи
Последовательность Фибоначчи — это хорошо известная последовательность чисел, определяемая рекуррентным соотношением F(n) = F(n-1) + F(n-2), гдеF(0) = 0и F(1) = 1. Простым рекурсивным алгоритмом вычисления чисел Фибоначчи было бы прямое использование рекуррентного соотношения, но это привело бы к экспоненциальной временной сложности. Динамическое программирование позволяет решить эту задачу за линейное время с помощью мемоизации, которая сохраняет результаты уже решенных подзадач.
Задача о самой длинной общей подпоследовательности (LCS) — это классическая задача динамического программирования, которая включает в себя поиск самой длинной подпоследовательности, общей для двух заданных строк. Подпоследовательность строки — это последовательность символов, которые появляются в строке в одном и том же порядке, но не обязательно последовательно.
3. Задача о рюкзаке
Задача о рюкзаке — это классическая задача оптимизации, которая включает в себя поиск оптимального подмножества предметов для упаковки в рюкзак с конечной вместимостью, чтобы максимизировать ценность упакованных предметов.
4. Расстояние Левенштейна (редакционное расстояние)
Задача редактирования расстояния заключается в нахождении минимального количества операций, необходимых для преобразования одной строки в другую. Допустимые операции: вставка, удаление и замена.
5. Самый большой подмассив
Задача о самом большом подмассиве заключается в поиске непрерывного подмассива в одномерном массиве чисел с наибольшей суммой.
Проблема размена монет включает в себя поиск количества способов внести сдачу на заданную сумму денег, используя заданный набор номиналов монет.
7. Умножение цепочки матриц
Задача умножения цепочек матриц заключается в поиске оптимального способа умножения ряда матриц. Это классический пример динамического программирования, который используется во многих областях, таких как компьютерная графика, численный анализ и научные вычисления.
8. Самая длинная возрастающая подпоследовательность
Проблема самой длинной растущей подпоследовательности (LIS) включает в себя поиск самой длинной подпоследовательности заданной последовательности, которая строго возрастает. Проблема LIS имеет множество реальных приложений, таких как сжатие данных, распознавание образов и биоинформатика.
9. Задача коммивояжера
Задача коммивояжера (TSP) заключается в поиске кратчайшего возможного маршрута, который проходит через заданный набор городов и возвращается в начальный город. TSP — это классическая задача информатики, которая имеет множество реальных приложений, таких как логистика, транспорт и оптимизация сети.
10. 0-1 Целочисленное программирование
Задача целочисленного программирования 0-1 включает в себя поиск оптимального решения для набора двоичных переменных решения с учетом набора ограничений. Задача целочисленного программирования 0-1 имеет множество практических применений, таких как распределение ресурсов, составление расписания и производственное планирование.
11. Расстояние Левенштейна с разрешенными операциями
Задача «Расстояние Левенштейна» может быть расширена, чтобы разрешить только определенный набор операций редактирования, таких как вставка, удаление и замена.
12. Самая длинная палиндромная подстрока
Задача «Самая длинная палиндромная подстрока» заключается в поиске самой длинной подстроки заданной строки, которая является палиндромом.
13. Задача о подмассиве максимального произведения (Maximum Product Subarray)
Задача о подмассиве максимального произведения заключается в поиске непрерывного подмассива в одномерном массиве чисел с наибольшим произведением.
14. Самый большой прямоугольник на гистограмме
Задача «Самый большой прямоугольник в гистограмме» включает в себя поиск самого большого прямоугольника, который может быть сформирован на гистограмме, состоящей из прямоугольников разной высоты.
15. Бросание яиц
Задача о бросании яиц состоит в том, чтобы найти минимальное количество попыток, необходимых для определения самого высокого этажа, с которого яйцо может быть сброшено, не разбиваясь.
16. Подсчет битов
Задача подсчета битов заключается в том, чтобы найти количество единичных битов в двоичном представлении каждого числа от 0 до n.
17. Идеальные квадраты
Задача о совершенных квадратах заключается в том, чтобы найти минимальное количество совершенных квадратных чисел, которые в сумме дают заданное число.
18. Раздел равной суммы подмножества (Partition Equal Subset Sum)
Проблема равной суммы подмножеств разделов включает в себя определение того, можно ли разбить данный набор на два подмножества так, чтобы сумма элементов в обоих подмножествах была одинаковой.
19. Самая длинная общая подстрока
Задача «Самая длинная общая подстрока» заключается в поиске самой длинной подстроки, общей для двух заданных строк.
22. Уникальные пути
Проблема уникальных путей включает в себя поиск количества уникальных путей из верхнего левого угла в нижний правый угол сетки m x n, по которым вы можете двигаться только вниз или вправо.
23. Расстояние Левенштейна с помощью разрешенных операций
Задачу «Расстояние Левенштейна» можно расширить, если мы хотим разрешить только определенный набор операций редактирования, таких как вставка, удаление и замена.
24. Проблема суммы подмножества
Проблема суммы подмножества включает в себя определение того, существует ли подмножество заданного набора целых чисел, которое в сумме дает заданную сумму.
25. Самая длинная палиндромная последовательность
Задача «Самая длинная палиндромная подпоследовательность» включает в себя поиск самой длинной подпоследовательности заданной строки, которая является палиндромом.
25. Самый большой прямоугольник на гистограмме
Задача «Самый большой прямоугольник в гистограмме» включает в себя поиск самого большого прямоугольника, который может быть сформирован на гистограмме, состоящей из прямоугольников разной высоты.
Уникальные пути 2
Задача «Уникальные пути II» — это разновидность задачи «Уникальные пути», в которой некоторые ячейки в сетке заблокированы и по ним нельзя пройти. Задача состоит в том, чтобы найти количество уникальных путей из верхнего левого угла в нижний правый угол сетки, где вы можете двигаться только вниз или вправо и не можете ходить по заблокированным ячейкам.
Заключение
Динамическое программирование — это мощный инструмент, необходимый для решения множества сложных задач спортивного программирования. Алгоритмы, обсуждаемые в этом блоге, — лишь некоторые из многих проблем, которые можно решить с помощью динамического программирования. Освоив эти алгоритмы и поняв лежащие в их основе принципы, вы сможете стать более конкурентоспособным программистом и решать более сложные задачи.
Как вы относитесь к спортивному программированию?